Drones have become essential tools in a wide range of industries, including agriculture, surveying, and transportation. However, tracking unmanned aerial vehicles (UAVs) in challenging environments, such cluttered or GNSS-denied environments, remains a critical issue. Additionally, UAVs are being deployed as part of multi-robot systems, where tracking their position can be essential for relative state estimation. In this paper, we evaluate the performance of a multi-scan integration method for tracking UAVs in GNSS-denied environments using a solid-state LiDAR and a Kalman Filter (KF). We evaluate the algorithm's ability to track a UAV in a large open area at various distances and speeds. Our quantitative analysis shows that while "tracking by detection" using a constant velocity model is the only method that consistently tracks the target, integrating multiple scan frequencies using a KF achieves lower position errors and represents a viable option for tracking UAVs in similar scenarios.
翻译:无人机(UAV)已经成为广泛应用于农业、勘测和运输等许多领域的重要工具。然而,在复杂环境,如杂乱或GNSS无法提供服务的环境下进行无人机跟踪仍然存在重要问题。此外,UAV作为多机器人系统的一部分部署,其位置跟踪对于相对状态估计来说可能是关键的。本文评估了一种基于固态激光雷达和卡尔曼滤波器(KF)的多波束集成跟踪方法在GNSS无法提供服务的环境下跟踪UAV的性能。我们评估了算法在不同距离和速度下跟踪UAV在大开放区域的能力。我们的定量分析表明,虽然“检测跟踪”使用恒定速度模型是唯一能够持续跟踪目标的方法,但使用KF集成多个扫描频率可以实现更低的位置误差,是在类似情况下跟踪UAV的可行选择。