Gibbs samplers are preeminent Markov chain Monte Carlo algorithms used in computational physics and statistical computing. Yet, their most fundamental properties, such as relations between convergence characteristics of their various versions, are not well understood. In this paper we prove the solidarity of their spectral gaps: if any of the random scan or $d!$ deterministic scans has a~spectral gap then all of them have. Our methods rely on geometric interpretation of the Gibbs samplers as alternating projection algorithms and analysis of the rate of convergence in the von Neumann--Halperin method of cyclic alternating projections. In addition, we provide a quantitative result: if the spectral gap of the random scan Gibbs sampler scales polynomially with dimension, so does the spectral gap of any of the deterministic scans.
翻译:摘要:Gibbs采样器是计算物理学和统计计算中使用的最重要的马尔可夫链蒙特卡洛算法。然而,它们最基本的特性,例如它们的各个版本之间的收敛特征之间的关系还不太清楚。在本文中,我们证明了它们的谱间隙的团结性:如果任何随机扫描或$d!$确定性扫描具有谱间隙,则所有扫描都有谱间隙。我们的方法依赖于将Gibbs采样器的几何解释为交替投影算法以及对循环交替投影法中收敛速度的分析。此外,我们还提供了一个定量结果:如果随机扫描Gibbs采样器的谱间隙与维数成多项式比例,那么任何确定性扫描的谱间隙也是如此。