In this paper, we consider the problem of automatically designing a Rectified Linear Unit (ReLU) Neural Network (NN) architecture (number of layers and number of neurons per layer) with the assurance that it is sufficiently parametrized to control a nonlinear system; i.e. control the system to satisfy a given formal specification. This is unlike current techniques, which provide no assurances on the resultant architecture. Moreover, our approach requires only limited knowledge of the underlying nonlinear system and specification. We assume only that the specification can be satisfied by a Lipschitz-continuous controller with a known bound on its Lipschitz constant; the specific controller need not be known. From this assumption, we bound the number of affine functions needed to construct a Continuous Piecewise Affine (CPWA) function that can approximate any Lipschitz-continuous controller that satisfies the specification. Then we connect this CPWA to a NN architecture using the authors' recent results on the Two-Level Lattice (TLL) NN architecture; the TLL architecture was shown to be parameterized by the number of affine functions present in the CPWA function it realizes.
翻译:在本文中,我们考虑了自动设计一个校正线性单元(ReLU)神经网络(NN)结构(每层神经元数和数量)的问题,保证它能够控制非线性系统;即控制系统以满足给定的正式规格。这与目前的技术不同,对由此形成的结构没有保证。此外,我们的方法只需要对基本的非线性系统和规格有有限的了解。我们假设只有Lipschitz连续控制器才能满足规格要求,该控制器以Lipschitz常识定的固定在Lipschitz常数上;不需要知道具体的控制器。从这一假设中,我们将建立连续的胡同(CPWA)功能所需的亲近功能数捆绑在一起,这些功能可以接近任何符合规格的Lipschitz连续控制器。然后,我们用作者最近关于双级Lattice(TLLL) NN结构的结果,将这个CP结构与NN结构连接起来;显示TLL结构的参数是按目前在WA中实现该功能的数量加以比较的。