In a future with autonomous robots, visual and spatial perception is of utmost importance for robotic systems. Particularly for aerial robotics, there are many applications where utilizing visual perception is necessary for any real-world scenarios. Robotic aerial grasping using drones promises fast pick-and-place solutions with a large increase in mobility over other robotic solutions. Utilizing Mask R-CNN scene segmentation (detectron2), we propose a vision-based system for autonomous rapid aerial grasping which does not rely on markers for object localization and does not require the appearance of the object to be previously known. Combining segmented images with spatial information from a depth camera, we generate a dense point cloud of the detected objects and perform geometry-based grasp planning to determine grasping points on the objects. In real-world experiments on a dynamically grasping aerial platform, we show that our system can replicate the performance of a motion capture system for object localization up to 94.5 % of the baseline grasping success rate. With our results, we show the first use of geometry-based grasping techniques with a flying platform and aim to increase the autonomy of existing aerial manipulation platforms, bringing them further towards real-world applications in warehouses and similar environments.
翻译:暂无翻译