We introduce a new method for inverse design of nanophotonic devices which guarantees that resulting designs satisfy strict length scale constraints - including minimum width and spacing constraints required by commercial semiconductor foundries. The method adopts several concepts from machine learning to transform the problem of topology optimization with strict length scale constraints to an unconstrained stochastic gradient optimization problem. Specifically, we introduce a conditional generator for feasible designs and adopt a straight-through estimator for backpropagation of gradients to a latent design. We demonstrate the performance and reliability of our method by designing several common integrated photonic components.
翻译:我们引入了一种反向设计纳米光学装置的新方法,保证其设计符合严格的长度限制,包括商业半导体铸造厂所需的最小宽度和间距限制;该方法采用若干概念,从机器学习到将具有严格长度限制的地形优化问题转化为不受限制的随机梯度优化问题;具体地说,我们引入了一种有条件的生成器,用于可行的设计,并采用了一种直通的测算器,用于将梯度反向转换为潜伏设计;我们通过设计一些共同的综合光学组件,展示了我们方法的性能和可靠性。