The introduction of electronic personal health records (EHR) enables nationwide information exchange and curation among different health care systems. However, the current EHR systems do not provide transparent means for diagnosis support, medical research or can utilize the omnipresent data produced by the personal medical devices. Besides, the EHR systems are centrally orchestrated, which could potentially lead to a single point of failure. Therefore, in this article, we explore novel approaches for decentralizing machine learning over distributed ledgers to create intelligent EHR systems that can utilize information from personal medical devices for improved knowledge extraction. Consequently, we proposed and evaluated a conceptual EHR to enable anonymous predictive analysis across multiple medical institutions. The evaluation results indicate that the decentralized EHR can be deployed over the computing continuum with reduced machine learning time of up to 60% and consensus latency of below 8 seconds.
翻译:电子个人健康记录(EHR)的引入使全国范围内不同保健系统之间的信息交流和整理得以实现,然而,目前的EHR系统并没有提供透明的诊断支持、医学研究手段,也没有能够利用个人医疗设备产生的无所不在的数据;此外,EHR系统是集中操作的,可能导致单一的失败点;因此,在本篇文章中,我们探讨了将机器学习分散到分布式分类账上的新办法,以创建智能的EHR系统,利用个人医疗设备的信息改进知识提取;因此,我们提议并评价了一个概念性EHR,以便能够对多个医疗机构进行匿名的预测分析;评价结果表明,分散的EHR可以在计算连续过程中部署,机器学习时间减少到60%,协商一致时间低于8秒钟。