The challenges of examining random partitions of space are a significant class of problems in the theory of geometric transformations. Richard Miles calculated moments of areas and perimeters of any order (including expectation) of the random division of space in 1972. In the paper we calculate whole distribution function of random divisions of plane by poisson line process. The idea is to interpret a random polygon as the evolution of a segment along a moving straight line. In the plane example, the issue connected with an infinite number of parameters is overcome by considering a secant line. We shall take into account the following tasks: {\textbf 1.} On the plane, a random set of straight lines is provided, all shifts are equally likely, and the distribution law is of the form $F(\varphi).$ What is the area distribution of the partition's components? {\textbf 2.} On the plane, a random set of points is marked. Each point $A$ has an associated area of attraction, which is the collection of points in the plane to which the point $A$ is the nearest of the designated ones. In the first problem, the density of moved sections adjacent to the line allows for the expression of the balancing ratio in kinetic form. Similarly, you can write the perimeters kinetic equations. We will demonstrate how to reduce these equations to the Riccati equation using the Laplace transformation in this paper.
翻译:检查空间随机分区的挑战是几何转换理论中的一大类问题。 Richard Miles计算了1972年任意空间分割的任何顺序( 包括预期) 的面积和周界( 包括预期值) 。 在本文中, 我们用 Poisson 线程计算平面随机分割的整个分布函数 。 想法是将随机多边形解释为移动直线线的分块的演进。 在平面中, 与无限数量参数有关的问题通过考虑松动线来克服 。 我们将考虑到以下任务: ~ textbf 1.} 在平面上, 随机提供一组直线线, 所有直线线都有可能, 而分配法是 $F (\ varphip) 格式。 $ 是分区组成部分的面积分布法 。 Latextbf 2.} 在平面上, 随机的点是一组点。 每个点都有相关的吸引区块, 也就是将点集中点聚集在平面上, 。 在第一个问题上, 移动部分的密度是 以 $A$ 最近的平面平面平面的平面表示 。 我们的平面平面平面的平面表示 。 将平面平面平方方形平方方方形平方形平方形平方方。