We propose pose-guided multiplane image (MPI) synthesis which can render an animatable character in real scenes with photorealistic quality. We use a portable camera rig to capture the multi-view images along with the driving signal for the moving subject. Our method generalizes the image-to-image translation paradigm, which translates the human pose to a 3D scene representation -- MPIs that can be rendered in free viewpoints, using the multi-views captures as supervision. To fully cultivate the potential of MPI, we propose depth-adaptive MPI which can be learned using variable exposure images while being robust to inaccurate camera registration. Our method demonstrates advantageous novel-view synthesis quality over the state-of-the-art approaches for characters with challenging motions. Moreover, the proposed method is generalizable to novel combinations of training poses and can be explicitly controlled. Our method achieves such expressive and animatable character rendering all in real time, serving as a promising solution for practical applications.
翻译:我们建议使用成像制成的多平面图像合成(MPI),这种合成可以在真实的场景中产生一个可想象的特征,具有摄影现实性的质量。我们使用便携式照相机来捕捉多视图像和移动对象的驱动信号。我们的方法概括了图像到图像的翻译模式,将人造像转化为三维场景的演示 -- -- 可以用多视捕捉作为监督,以自由视角制成的MPI。为了充分培养MPI的潜力,我们建议了深度适应性MPI,可以利用可变暴露图像来学习,同时对不准确的相机登记。我们的方法展示了优于具有挑战性动作的人物最先进的小视合成方法。此外,拟议的方法可以概括为培训面部的新型组合,并且可以明确控制。我们的方法在实时实现这种直观和可成形的特性,作为实际应用的有希望的解决方案。