Quantitative Ultrasound (QUS) provides important information about the tissue properties. QUS parametric image can be formed by dividing the envelope data into small overlapping patches and computing different speckle statistics such as parameters of the Nakagami and Homodyned K-distributions (HK-distribution). The calculated QUS parametric images can be erroneous since only a few independent samples are available inside the patches. Another challenge is that the envelope samples inside the patch are assumed to come from the same distribution, an assumption that is often violated given that the tissue is usually not homogenous. In this paper, we propose a method based on Convolutional Neural Networks (CNN) to estimate QUS parametric images without patching. We construct a large dataset sampled from the HK-distribution, having regions with random shapes and QUS parameter values. We then use a well-known network to estimate QUS parameters in a multi-task learning fashion. Our results confirm that the proposed method is able to reduce errors and improve border definition in QUS parametric images.
翻译:定量超声波(QUS) 提供有关组织属性的重要信息。 QUS 参数图像可以通过将信封数据分割成小的重叠补丁和计算不同的分数统计来形成。 计算出来的QUS 参数图像可能会有误, 因为补丁内只有几个独立的样本。 另一个挑战在于, 补丁内的信封样本假定来自同一分布, 由于组织通常不是同质的, 这个假设经常被违反。 在本文中, 我们建议了一种基于Culturalal Neal 网络(CNN) 的方法, 以不补补地估算QUS 参数图像。 我们从HK- 分布中建立大型的数据集样本, 带有随机形状和QUS 参数值的区域。 我们随后使用一个众所周知的网络, 以多功能学习的方式估算 QUS 参数。 我们的结果证实, 拟议的方法能够减少错误, 改进QUS 参数图像的边界定义 。