Ancient Chinese word segmentation (WSG) and part-of-speech tagging (POS) are important to study ancient Chinese, but the amount of ancient Chinese WSG and POS tagging data is still rare. In this paper, we propose a novel augmentation method of ancient Chinese WSG and POS tagging data using distant supervision over parallel corpus. However, there are still mislabeled and unlabeled ancient Chinese words inevitably in distant supervision. To address this problem, we take advantage of the memorization effects of deep neural networks and a small amount of annotated data to get a model with much knowledge and a little noise, and then we use this model to relabel the ancient Chinese sentences in parallel corpus. Experiments show that the model trained over the relabeled data outperforms the model trained over the data generated from distant supervision and the annotated data. Our code is available at https://github.com/farlit/ACDS.


翻译:中国古代文字分割和部分语音标记对于研究古中国十分重要,但古中国WSG和POS标记数据的数量仍然很少。在本文中,我们提议采用新颖的增强方法,利用远处的平行保护系统对古中国WSG和POS数据进行标记,然而,在远处的监视下,仍然有误标和未贴标签的古代中文词句。为了解决这一问题,我们利用深层神经网络的记忆化效应和少量附加说明的数据来获得一个知识丰富、噪音小的模型,然后我们利用这个模型将古代中国句子重新标为平行体。实验显示,经过重新标签数据培训的模型比经过远程监督和附加说明数据培训的模型要强。我们的代码可在https://github.com/farlit/ACDS上查阅。</s>

0
下载
关闭预览

相关内容

词性(part-of-speech)是词汇基本的语法属性,通常也称为词类。词性标注就是在给定句子中判定每个词的语法范畴,确定其词性并加以标注的过程,是中文信息处理面临的重要基础性问题。在语料库语言学中,词性标注(POS标注或PoS标注或POST),也称为语法标注,是将文本(语料库)中的单词标注为与特定词性相对应的过程,[1] 基于其定义和上下文。
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月25日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
14+阅读 · 2018年5月15日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员