We present a potent computational method for the solution of inverse problems in fluid mechanics. We consider inverse problems formulated in terms of a deterministic loss function that can accommodate data and regularization terms. We introduce a multigrid decomposition technique that accelerates the convergence of gradient-based methods for optimization problems with parameters on a grid. We incorporate this multigrid technique to the ODIL (Optimizing a DIscrete Loss) framework. The multiresolution ODIL (mODIL) accelerates by an order of magnitude the original formalism and improves the avoidance of local minima. Moreover, mODIL accommodates the use of automatic differentiation for calculating the gradients of the loss function, thus facilitating the implementation of the framework. We demonstrate the capabilities of mODIL on a variety of inverse and flow reconstruction problems: solution reconstruction for the Burgers equation, inferring conductivity from temperature measurements, and inferring the body shape from wake velocity measurements in three dimensions. We also provide a comparative study with the related, popular Physics-Informed Neural Networks (PINN) method. We demonstrate that mODIL provides 200x speedup in terms of iteration number on the lid-driven cavity problem and has orders of magnitude lower computational cost. Our results suggest that mODIL is the fastest and most accurate method for solving 2D and 3D inverse problems in fluid mechanics.


翻译:我们提出了一种解决流体力学逆差问题的强有力的计算方法。我们考虑了在确定性损失功能方面形成的、能够满足数据和正规化条件的反向问题。我们采用了一种多格分解技术,加速了基于梯度的优化方法与网格参数的趋同。我们将这种多格技术纳入ODIL(优化溶液流失)框架。多分辨率ODIL(MODIL)以原有形式化的规模顺序加速,并改进了对当地微型网络的避免。此外,MODIIL在计算损失函数的梯度时采用了自动区分,从而便利了框架的执行。我们展示了 mODIL在各种反向和流动重建问题上的能力:汉堡方方程式的解决方案重建,从温度测量中推断出导力性能,以及体形形状从三个维度测速度测量中推导出。我们还提供了与相关、流行性物理-内建网络(PINN)网络(PINUD)的对比性研究。此外,MODIL在计算速度方法中显示,MODIL(MIL) 3的精确度和计算方法中,以最快速度计算方法显示,其速度为2的计算结果为2。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员