Deep learning based semantic segmentation is one of the popular methods in remote sensing image segmentation. In this paper, a network based on the widely used encoderdecoder architecture is proposed to accomplish the synthetic aperture radar (SAR) images segmentation. With the better representation capability of optical images, we propose to enrich SAR images with generated optical images via the generative adversative network (GAN) trained by numerous SAR and optical images. These optical images can be used as expansions of original SAR images, thus ensuring robust result of segmentation. Then the optical images generated by the GAN are stitched together with the corresponding real images. An attention module following the stitched data is used to strengthen the representation of the objects. Experiments indicate that our method is efficient compared to other commonly used methods
翻译:基于深层学习的语义分解是遥感图像分解的常用方法之一。 在本文中,提议建立一个基于广泛使用的编码编码编码结构的网络,以完成合成孔径雷达(SAR)图像分解。由于光学图像具有更好的表达能力,我们提议通过通过许多合成孔径雷达和光学图像培训的基因反转网络(GAN),以生成的光学图像来丰富合成孔径雷达图像。这些光学图像可以用作原始合成孔径雷达图像的扩展,从而确保分离的稳健结果。然后,将GAN产生的光学图像与相应的真实图像一起缝合。在经过缝合的数据之后,一个关注模块被用来加强物体的表达。实验表明,我们的方法与其他常用的方法相比是有效的。