To bridge the gap between supervised semantic segmentation and real-world applications that acquires one model to recognize arbitrary new concepts, recent zero-shot segmentation attracts a lot of attention by exploring the relationships between unseen and seen object categories, yet requiring large amounts of densely-annotated data with diverse base classes. In this paper, we propose a new open-world semantic segmentation pipeline that makes the first attempt to learn to segment semantic objects of various open-world categories without any efforts on dense annotations, by purely exploiting the image-caption data that naturally exist on the Internet. Our method, Vision-language-driven Semantic Segmentation (ViL-Seg), employs an image and a text encoder to generate visual and text embeddings for the image-caption data, with two core components that endow its segmentation ability: First, the image encoder is jointly trained with a vision-based contrasting and a cross-modal contrasting, which encourage the visual embeddings to preserve both fine-grained semantics and high-level category information that are crucial for the segmentation task. Furthermore, an online clustering head is devised over the image encoder, which allows to dynamically segment the visual embeddings into distinct semantic groups such that they can be classified by comparing with various text embeddings to complete our segmentation pipeline. Experiments show that without using any data with dense annotations, our method can directly segment objects of arbitrary categories, outperforming zero-shot segmentation methods that require data labeling on three benchmark datasets.
翻译:为了缩小监督的语义分解与现实世界应用程序之间的差距,这些应用程序获得了一种模型,以识别任意性的新概念,为了缩小监督的语义分解与现实世界应用程序之间的差距,最近的零光分解通过探索看不见和可见的物体类别之间的关系而引起人们的极大关注,但需要大量带有不同基级的密集附加数据。在本文中,我们建议建立一个新的开放世界语义分解管道,首次尝试在不做密集说明的情况下学习分解各种开放世界类别的语义对象,纯粹利用互联网上自然存在的图像分解数据。我们的方法,即视觉语言驱动的语义分解分解(ViL-Seg),使用图像和文字编码编码编码器来生成视觉和文字分解数据数据数据。首先,图像分解是经过基于视觉的对比和跨模式对比,鼓励视觉嵌入精细度的语义分解和高层次的分类信息,对于分解的分解任务至关重要。此外,一个核心的图像分解方式需要将数据分解的分解方式与不同的数据分组进行对比,从而将数据分解的分解的分解的分解到分解的分解结构进行分解。