In this work, we extend the deep energy method (DEM), which has been used to solve elastic deformation of structures, to problems involving classical elastoplasticity. A loss function for elastoplastic DEM is proposed, inspired by the discrete variational formulation of plasticity. The radial return algorithm is coupled with DEM to update the plastic internal state variables without violating the Kuhn-Tucker consistency conditions. Finite element shape functions and their gradients are used to approximate the spatial gradients of the DEM-predicted displacements, and Gauss quadrature is used to integrate the loss function. Five numerical examples are presented to demonstrate the use of the framework with different material models such as isotropic hardening, perfect plasticity, and kinematic hardening. Monotonic and cyclic loading cases are also considered. In all cases, the DEM solution shows high accuracy compared to the reference solution obtained from the finite element method. We also show that the DEM model trained on a coarse mesh retains high accuracy when inferring state variables on a refined mesh. The current DEM model marks the first time that DEM is extended to plasticity, and offers promising potential to effectively solve elastoplasticity problems from scratch using neural networks.
翻译:在这项工作中,我们将用于解决结构弹性变形的深能量方法(DEM)扩大到涉及传统弹性变形的问题,并提议了弹性变异性DEM的损失功能,这种变异性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可演化功能与DEM结合。在不违反Kuhn-Tucker一致性条件的情况下,辐射可翻转可翻换塑料可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性可塑性。。