The problem of monotone submodular maximization has been studied extensively due to its wide range of applications. However, there are cases where one can only access the objective function in a distorted or noisy form because of the uncertain nature or the errors involved in the evaluation. This paper considers the problem of constrained monotone submodular maximization with noisy oracles introduced by [Hassidim et al., 2017]. For a cardinality constraint, we propose an algorithm achieving a near-optimal $\left(1-\frac{1}{e}-O(\varepsilon)\right)$-approximation guarantee (for arbitrary $\varepsilon > 0$) with only a polynomial number of queries to the noisy value oracle, which improves the exponential query complexity of [Singer et al., 2018]. For general matroid constraints, we show the first constant approximation algorithm in the presence of noise. Our main approaches are to design a novel local search framework that can handle the effect of noise and to construct certain smoothing surrogate functions for noise reduction.
翻译:单调子模块最大化问题由于应用范围广泛而得到了广泛研究。 但是,有些情况下,由于评估的不确定性或错误,人们只能以扭曲或噪音的形式获取目标功能。本文件审议了以[Hassidim等人,2017年] 引进的噪声神器限制单调子模块最大化的问题。对于一个最基本的限制,我们建议一种算法,实现接近最佳的左翼(1-\frac{1 ⁇ e}-O(varepsilon)\right)$-对称保证(任意的 $\varepsilon > 0$),只有多数的对噪声神器的查询,这提高了[Singer等人,2018年] 的指数性查询复杂性。对于一般的胎体限制,我们展示了在噪音出现时的第一个恒定的近似算法。我们的主要方法是设计一个新的本地搜索框架,可以处理噪音的效果,并构建某种平滑的噪音减少噪音功能。