Artificial Intelligence for IT Operations (AIOps) leverages AI approaches to handle the massive amount of data generated during the operations of software systems. Prior works have proposed various AIOps solutions to support different tasks in system operations and maintenance, such as anomaly detection. In this study, we conduct an in-depth analysis of open-source AIOps projects to understand the characteristics of AIOps in practice. We first carefully identify a set of AIOps projects from GitHub and analyze their repository metrics (e.g., the used programming languages). Then, we qualitatively examine the projects to understand their input data, analysis techniques, and goals. Finally, we assess the quality of these projects using different quality metrics, such as the number of bugs. To provide context, we also sample two sets of baseline projects from GitHub: a random sample of machine learning projects and a random sample of general-purposed projects. By comparing different metrics between our identified AIOps projects and these baselines, we derive meaningful insights. Our results reveal a recent and growing interest in AIOps solutions. However, the quality metrics indicate that AIOps projects suffer from more issues than our baseline projects. We also pinpoint the most common issues in AIOps approaches and discuss potential solutions to address these challenges. Our findings offer valuable guidance to researchers and practitioners, enabling them to comprehend the current state of AIOps practices and shed light on different ways of improving AIOps' weaker aspects. To the best of our knowledge, this work marks the first attempt to characterize open-source AIOps projects.
翻译:暂无翻译