We consider a multi-process remote estimation system observing $K$ independent Ornstein-Uhlenbeck processes. In this system, a shared sensor samples the $K$ processes in such a way that the long-term average sum mean square error (MSE) is minimized. The sensor operates under a total sampling frequency constraint $f_{\max}$. The samples from all processes consume random processing delays in a shared queue and then are transmitted over an erasure channel with probability $\epsilon$. We study two variants of the problem: first, when the samples are scheduled according to a Maximum-Age-First (MAF) policy, and the receiver provides an erasure status feedback; and second, when samples are scheduled according to a Round-Robin (RR) policy, when there is no erasure status feedback from the receiver. Aided by optimal structural results, we show that the optimal sampling policy for both settings, under some conditions, is a \emph{threshold policy}. We characterize the optimal threshold and the corresponding optimal long-term average sum MSE as a function of $K$, $f_{\max}$, $\epsilon$, and the statistical properties of the observed processes. Our results show that, with an exponentially distributed service rate, the optimal threshold $\tau^*$ increases as the number of processes $K$ increases, for both settings. Additionally, we show that the optimal threshold is an \emph{increasing} function of $\epsilon$ in the case of \emph{available} erasure status feedback, while it exhibits the \emph{opposite behavior}, i.e., $\tau^*$ is a \emph{decreasing} function of $\epsilon$, in the case of \emph{absent} erasure status feedback.
翻译:带有和没有反馈的及时多进程消失通道估计
翻译后的摘要:
我们考虑一个多进程远程估计系统,该系统观察 K 个独立的 Ornstein-Uhlenbeck 进程。在此系统中,共享传感器以使得长期平均总均方误差 (MSE) 最小化的方式对 K 个进程进行采样。传感器在总采样频率约束 fmax 下运作。所有进程的样本在共享队列中消耗随机处理延迟,然后通过擦除信道传输,并具有擦除概率 ε。我们研究该问题的两个变体:第一种是当样本按照最大年龄优先 (MAF) 策略进行调度时,并且接收方提供消失状态反馈;第二种是当样本按照轮流(RR)策略进行调度时,接收方没有消失状态反馈。我们通过最优性结构结果,证明了在某些条件下,这两种情况下的最优采样策略都是一个阈值策略。我们描述了作为 $K$,$f_{\max}$、$\epsilon$ 和所观察进程的统计特性的函数的最佳阈值和相应的最优长期平均总 MSE。我们的结果表明,在指数分布的服务速率下,最优阈值$\tau^*$随着进程数 K 的增加而增加,对于两种情况都是如此。此外,我们显示在具有可获得的消失状态反馈的情况下,最优阈值是一个上升的函数,而在消失状态反馈不存在的情况下,它表现出相反的行为,即$\tau^*$是一个下降的函数。