In this paper, we focus on the mathematical foundations of reduced order model (ROM) closures. First, we extend the verifiability concept from large eddy simulation to the ROM setting. Specifically, we call a ROM closure model verifiable if a small ROM closure model error (i.e., a small difference between the true ROM closure and the modeled ROM closure) implies a small ROM error. Second, we prove that a data-driven ROM closure (i.e., the data-driven variational multiscale ROM) is verifiable. Finally, we investigate the verifiability of the data-driven variational multiscale ROM in the numerical simulation of the one-dimensional Burgers equation and a two-dimensional flow past a circular cylinder at Reynolds numbers $Re=100$ and $Re=1000$.
翻译:在本文中,我们把重点放在减少订单模式关闭的数学基础上。首先,我们把核查概念从大型电子模拟扩大到ROM设置。具体地说,如果小型ROM关闭模式错误(即真正的ROM关闭与模型的ROM关闭之间有小的差别)意味着一个小的ROM错误,我们称之为可核实的ROM关闭模式。第二,我们证明数据驱动的ROM关闭(即数据驱动的多尺度变异ROM)是可核查的。最后,我们调查单维布尔格斯方程式数字模拟中数据驱动变异多尺度的ROM的可核查性,以及以Rynoldus $Re=100美元和$RE=1000美元通过圆圆柱流的二维流。