项目名称: 原子配位体钝化量子点太阳电池

项目编号: No.51272084

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 于伟泳

作者单位: 吉林大学

项目金额: 80万元

中文摘要: 胶质PbSe量子点的量子效率为89%,通过调节尺寸,其吸收光谱可以覆盖大部分太阳光谱,同时,强多激子产生效应,使得它的太阳电池理论转化效率达到60.3%。但是,表面长碳链配体导电性较差,严重限制了目前PbSe量子点太阳电池的转化效率。本课题拟采用原子钝化PbSe量子点,完全去除表面有机配位体,降低配位层厚度,增强量子点中光生载流子分离能力。研究并合成卤离子钝化PbSe量子点,测量量子点薄膜导电性,分析配位体层厚度变化对导电性的影响;制作卤离子钝化PbSe量子点太阳电池,优化器件结构和工艺参数;测量器件变温I-V特性,结合变温时间分辨率荧光光谱,研究光生载流子迁移机制,建立PbSe/ZnO异质结模型。本项目首次提出用原子钝化PbSe量子点,探明原子钝化PbSe量子点技术,提高量子点有源层电导率,制作原子钝化PbSe太阳电池,转化效率达到6.0%,建立PbSe/ZnO异质结载流子迁移模型。

中文关键词: 原子配位体;硒化铅;钝化;量子点;太阳电池

英文摘要: Colloidal PbSe quantum dots has a high quantum yields of 89%.Its size- dependent band gap spans most of the spectra of solar radiation.Because of the strong multi- exciton generation, the theoretical power convertion efficiency of PbSe quantum dots solar cell is 60.3%. However,the conductivity of surface organic ligands with long carbon chain is bad which restricts the power convertion efficiency of current PbSe quantum dots solar cell.Therefore, we propose to use atom to passivate the surface of PbSe quantum dots,remove the surface organic ligands, decrease the thickness of the ligands layer and separate the photo-induced carrier effectively.First,we will prepare the halogen-passivated PbSe quantum dots,test the film conductivity and investigate the influence on the thickness of ligands layer; sencond, the halogen-passivated PbSe quantum dots are employed to fabricate the solar cell and the device structure should be optimized; at last,the temperature- dependent I-V characteristic will be tested to analyze the transition model according to the temperature- dependent time resolution photoluminescence spectra.It is the first time to propose and prepare atom-passivated PbSe quantum dots to improve the conductivity of active layer in solar cell. The goal is to achieve the power convertion efficiency of 6%.

英文关键词: atomic-ligands;PbSe;passivation;quantum dots;solar cell

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
103+阅读 · 2021年6月8日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年5月6日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
医疗知识图谱构建与应用
专知会员服务
383+阅读 · 2019年9月25日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
中国能源体系 碳中和路线图,254页pdf
专知会员服务
76+阅读 · 2022年3月23日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
16+阅读 · 2021年10月23日
《6G总体愿景与潜在关键技术》白皮书,32页pdf
专知会员服务
103+阅读 · 2021年6月8日
专知会员服务
66+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年5月6日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
医疗知识图谱构建与应用
专知会员服务
383+阅读 · 2019年9月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员