Clinical prediction models estimate an individual's risk of a particular health outcome, conditional on their values of multiple predictors. A developed model is a consequence of the development dataset and the chosen model building strategy, including the sample size, number of predictors and analysis method (e.g., regression or machine learning). Here, we raise the concern that many models are developed using small datasets that lead to instability in the model and its predictions (estimated risks). We define four levels of model stability in estimated risks moving from the overall mean to the individual level. Then, through simulation and case studies of statistical and machine learning approaches, we show instability in a model's estimated risks is often considerable, and ultimately manifests itself as miscalibration of predictions in new data. Therefore, we recommend researchers should always examine instability at the model development stage and propose instability plots and measures to do so. This entails repeating the model building steps (those used in the development of the original prediction model) in each of multiple (e.g., 1000) bootstrap samples, to produce multiple bootstrap models, and then deriving (i) a prediction instability plot of bootstrap model predictions (y-axis) versus original model predictions (x-axis), (ii) a calibration instability plot showing calibration curves for the bootstrap models in the original sample; and (iii) the instability index, which is the mean absolute difference between individuals' original and bootstrap model predictions. A case study is used to illustrate how these instability assessments help reassure (or not) whether model predictions are likely to be reliable (or not), whilst also informing a model's critical appraisal (risk of bias rating), fairness assessment and further validation requirements.


翻译:临床预测模型 估计个人特定健康结果的风险, 以其多个预测值为条件。 发达模型是发展数据集和选定模型建设战略的结果, 包括抽样规模、预测数和分析方法( 如回归或机器学习 ) 。 这里, 我们提出这样的关切, 许多模型是使用小型数据集开发的, 导致模型及其预测( 估计风险) 不稳定。 我们定义了从整体平均值到个人水平的估计风险的四级模型稳定性。 然后, 通过统计和机器学习方法的模拟和案例研究, 我们显示了模型估计风险的稳定性往往相当大, 最终表现为新数据预测的误差。 因此, 我们建议研究人员应始终检查模型开发阶段的不稳定性, 并提出不稳定性图案和措施。 这意味着要重复模型构建步骤( 用于原始预测模型模型的模型 ) 从总体平均值到原始指数( 1000) 靴陷阱评估样本, 以产生多重的帮助模型模型, 并且随后得出( ) 靴子的估算值的准确性预估测模型和原始模型的精确性预测( 轴 ) 模型的精确性模型的精确性模型的校正值预测( ) 是原始模型的精确的校正的模型的精确的校正( ) 模型的校正( ) 的模型的模型的校正的模型的模型的校正的模型的推的模型的模型的模型的模型的模型的精确的推的精确的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的推的

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员