We consider the task of weighted first-order model counting (WFOMC) used for probabilistic inference in the area of statistical relational learning. Given a formula $\phi$, domain size $n$ and a pair of weight functions, what is the weighted sum of all models of $\phi$ over a domain of size $n$? It was shown that computing WFOMC of any logical sentence with at most two logical variables can be done in time polynomial in $n$. However, it was also shown that the task is $\texttt{#}P_1$-complete once we add the third variable, which inspired the search for extensions of the two-variable fragment that would still permit a running time polynomial in $n$. One of such extension is the two-variable fragment with counting quantifiers. In this paper, we prove that adding a linear order axiom (which forces one of the predicates in $\phi$ to introduce a linear ordering of the domain elements in each model of $\phi$) on top of the counting quantifiers still permits a computation time polynomial in the domain size. We present a new dynamic programming-based algorithm which can compute WFOMC with linear order in time polynomial in $n$, thus proving our primary claim.
翻译:我们考虑的是用于统计关系学习领域概率推断的加权一阶模型计算任务(WFOMC) 。 根据一个公式 $\ phi$, 域内大小$ $n$ 美元, 以及两个重量函数, 所有模型的加权和美元面积范围内的加权和美元 $ 美元? 我们发现, 计算任何逻辑句子的WFOMC, 最多有两个逻辑变量, 最多两个时间多元值以美元计算。 但是, 也显示, 一旦我们添加第三个变量, 任务就是 $\ textt ⁇ P_ $-1$- 完成。 这促使人们寻找两个变量的扩展, 这些变量仍然允许以美元运行时间多元值。 其中的一个扩展是两个变量, 带有量化符。 在本文中, 我们证明, 在计算基数的基数中, $\ fripi 模型中, 输入域内域内域内的域内线性定序线性排序 $\phy$ 。