In recent years the field of causal inference from observational data has emerged rapidly. This literature has focused on (conditional) average causal effect estimation. When (remaining) variability of individual causal effects (ICEs) is considerable, average effects may be less informative, and possibly misleading for an individual. The fundamental problem of causal inference precludes the estimation of the joint distribution of potential outcomes without making assumptions, while this distribution is necessary to describe the heterogeneity of causal effects. In this paper, we describe these assumptions and present a family of flexible latent variable models that can be used to study individual effect modification and estimate the ICE distribution from cross-sectional data. We will also discuss how the distribution is affected by misspecification of the error distribution or ignoring possible confounding-effect heterogeneity. How latent variable models can be applied and validated in practice is illustrated in a case study on the effect of Hepatic Steatosis on a clinical precursor to heart failure. Assuming that there is (i) no unmeasured confounding and (ii) independence of the individual effect modifier and the potential outcome under no exposure, we conclude that the individual causal effect distribution deviates from Gaussian. We estimate that the `treatment' benefit rate in the population is 23.7% (95% Bayesian credible interval: 2.6%, 53.7%) despite a harming average effect.


翻译:近些年来,观测数据的因果关系推断领域迅速出现。本文献侧重于(有条件的)平均因果关系估计。当个人因果效应(ICES)的(继续)变异性相当可观时,平均效果可能不太具有信息性,对个人而言可能具有误导性。因果推断的根本问题排除了对潜在结果的共同分布进行估计而不作出假设,而这种分布对于描述因果效应的异质性是必要的。在本文件中,我们对这些假设进行了描述,并提出了一套灵活的潜伏的灵活模型,可用于研究个别效果的修改和根据跨部门数据估计ICE的分布。当(继续)个别因果效应的变异性相当大时,平均效果可能会对个人产生影响,而对个人的影响可能没有产生多少信息,而对个人的影响可能令人心碎的异性影响,我们从一项关于Hepatic病对心脏病临床前体的影响的案例研究中得出结论。 7 假设(i) 个人效果改变和(ii) 个人影响改变和潜在结果在平均辐射率下,我们得出了“25 % 水平 ” 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月19日
Arxiv
0+阅读 · 2022年12月16日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员