We present a benchmark for assessing the capability of Large Language Models (LLMs) to discern intercardinal directions between geographic locations and apply it to three prominent LLMs: GPT-3.5, GPT-4, and Llama-2. This benchmark specifically evaluates whether LLMs exhibit a hierarchical spatial bias similar to humans, where judgments about individual locations' spatial relationships are influenced by the perceived relationships of the larger groups that contain them. To investigate this, we formulated 14 questions focusing on well-known American cities. Seven questions were designed to challenge the LLMs with scenarios potentially influenced by the orientation of larger geographical units, such as states or countries, while the remaining seven targeted locations less susceptible to such hierarchical categorization. Among the tested models, GPT-4 exhibited superior performance with 55.3% accuracy, followed by GPT-3.5 at 47.3%, and Llama-2 at 44.7%. The models showed significantly reduced accuracy on tasks with suspected hierarchical bias. For example, GPT-4's accuracy dropped to 32.9% on these tasks, compared to 85.7% on others. Despite these inaccuracies, the models identified the nearest cardinal direction in most cases, suggesting associative learning, embodying human-like misconceptions. We discuss the potential of text-based data representing geographic relationships directly to improve the spatial reasoning capabilities of LLMs.
翻译:暂无翻译