In recent years, large-scale deep models have achieved great success, but the huge computational complexity and massive storage requirements make it a great challenge to deploy them in resource-limited devices. As a model compression and acceleration method, knowledge distillation effectively improves the performance of small models by transferring the dark knowledge from the teacher detector. However, most of the existing distillation-based detection methods mainly imitating features near bounding boxes, which suffer from two limitations. First, they ignore the beneficial features outside the bounding boxes. Second, these methods imitate some features which are mistakenly regarded as the background by the teacher detector. To address the above issues, we propose a novel Feature-Richness Score (FRS) method to choose important features that improve generalized detectability during distilling. The proposed method effectively retrieves the important features outside the bounding boxes and removes the detrimental features within the bounding boxes. Extensive experiments show that our methods achieve excellent performance on both anchor-based and anchor-free detectors. For example, RetinaNet with ResNet-50 achieves 39.7% in mAP on the COCO2017 dataset, which even surpasses the ResNet-101 based teacher detector 38.9% by 0.8%. Our implementation is available at https://github.com/duzhixing/FRS.


翻译:近年来,大型深层模型取得了巨大成功,但巨大的计算复杂性和大规模储存要求使在资源有限的装置中部署这些模型成为巨大的挑战。作为一种模型压缩和加速方法,知识蒸馏通过传授教师探测器的黑暗知识,有效地改进了小型模型的性能。然而,大多数现有的蒸馏法主要模仿捆绑箱附近的特征,这些特征有两种限制。首先,它们忽视了捆绑箱外的有益特征。第二,这些方法模仿了一些被教师探测器误认为背景的特征。为了解决上述问题,我们建议采用一种新的“特异性-精度评分”(FRS)方法来选择重要特征,提高蒸馏过程中的普遍可探测性。拟议方法有效地检索了捆绑箱外的重要特征,并消除了捆绑箱内的有害特征。广泛的实验表明,我们的方法在固定式和无固定式探测器上都取得了出色的性能。例如,RetinaNet-50的系统网络在CO2017/Richness中实现了39.7 % mAP,在GERCO90/REDRASHS上甚至已经检测了RES-DRA/DRASY。在GERMRVDRMDRM/RVSDRMDRVDRVDRV中,这是可以探测到的。

0
下载
关闭预览

相关内容

NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
大盘点 | 性能最强的目标检测算法
新智元
13+阅读 · 2019年7月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Arxiv
9+阅读 · 2021年3月3日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年5月16日
Arxiv
6+阅读 · 2018年3月19日
VIP会员
相关VIP内容
相关资讯
大盘点 | 性能最强的目标检测算法
新智元
13+阅读 · 2019年7月9日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
相关论文
Top
微信扫码咨询专知VIP会员