In this paper we consider the problem of reconstructing an image that is downsampled in the space of its $SE(2)$ wavelet transform, which is motivated by classical models of simple cells receptive fields and feature preference maps in primary visual cortex. We prove that, whenever the problem is solvable, the reconstruction can be obtained by an elementary project and replace iterative scheme based on the reproducing kernel arising from the group structure, and show numerical results on real images.


翻译:在本文中,我们考虑了重建一个在$SE(2)$的波盘变换空间中被压低的图像的问题,这种变换是由简单的细胞可容纳场的古典模型和初级视觉皮层的特选图所驱动的。 我们证明,只要问题可以解决,就可以通过一个基本项目进行重建,并取代基于群体结构产生的再生内核的迭接机制,同时在真实图像上显示数字结果。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
VIP会员
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员