Neural Radiance Fields (NeRF) is a technique for high quality novel view synthesis from a collection of posed input images. Like most view synthesis methods, NeRF uses tonemapped low dynamic range (LDR) as input; these images have been processed by a lossy camera pipeline that smooths detail, clips highlights, and distorts the simple noise distribution of raw sensor data. We modify NeRF to instead train directly on linear raw images, preserving the scene's full dynamic range. By rendering raw output images from the resulting NeRF, we can perform novel high dynamic range (HDR) view synthesis tasks. In addition to changing the camera viewpoint, we can manipulate focus, exposure, and tonemapping after the fact. Although a single raw image appears significantly more noisy than a postprocessed one, we show that NeRF is highly robust to the zero-mean distribution of raw noise. When optimized over many noisy raw inputs (25-200), NeRF produces a scene representation so accurate that its rendered novel views outperform dedicated single and multi-image deep raw denoisers run on the same wide baseline input images. As a result, our method, which we call RawNeRF, can reconstruct scenes from extremely noisy images captured in near-darkness.


翻译:神经辐射场( NeRF) 是一种技术, 用于从所提供输入图像的集成中进行高质量的新视角合成。 和大多数的合成方法一样, NeRF 使用音速测绘低动态范围( LDR) 作为输入; 这些图像是由一个丢失的相机管道处理的, 它可以平滑细节、 剪辑亮亮片, 扭曲原始传感器数据的简单噪音分布。 我们修改 NeRF, 而不是直接用线性原始图像进行训练, 保护现场的全动态范围。 通过从产生的 NERF 中生成原始图像, 我们可以执行新的高动态范围( HDR) 的原始图像。 除了改变相机视图外, 我们可以在事后操纵焦点、 曝光和 音调图画。 尽管一个单一的原始图像看起来比后处理的要吵得多, 但我们显示 NERF 高度坚固到原始噪音的零度分布。 当对许多噪音的原始输入进行优化时( 25- 200), NERF 产生一个场景色代表如此精确的场景, 使得新观点超越了专用的单面和多光深深深深深深深深深的图像, 运行于同一宽基线输入图像。 作为结果, 我们的图像在最接近的图像中, 我们所拍摄的图像中, 我们所拍摄的摄像。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月28日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员