In this self-contained chapter, we revisit a fundamental problem of multivariate statistics: estimating covariance matrices from finitely many independent samples. Based on massive Multiple-Input Multiple-Output (MIMO) systems we illustrate the necessity of leveraging structure and considering quantization of samples when estimating covariance matrices in practice. We then provide a selective survey of theoretical advances of the last decade focusing on the estimation of structured covariance matrices. This review is spiced up by some yet unpublished insights on how to benefit from combined structural constraints. Finally, we summarize the findings of our recently published preprint "Covariance estimation under one-bit quantization" to show how guaranteed covariance estimation is possible even under coarse quantization of the samples.


翻译:在此自成一体的章节中,我们重新审视了多变量统计的一个根本问题:从有限的许多独立样本中估算共变矩阵。根据大规模多投入多重产出(MIMO)系统,我们说明在实际估算共变矩阵时,必须利用结构,并考虑对样本进行量化。然后我们有选择地调查过去十年的理论进展,重点是结构化共变矩阵的估计。这项审查得到一些尚未公布的关于如何从综合结构制约中获益的见解的启发的促进。最后,我们总结了我们最近出版的预印“一位数量化下的共变估计”的结论,以表明即使样品的粗略量化不足,也有可能保证共变差估计。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月6日
Arxiv
27+阅读 · 2020年12月24日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
12+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员