In a realistic wireless environment, the multi-antenna channel usually exhibits spatially correlation fading. This is more emphasized when a large number of antennas is densely deployed, known as holographic massive MIMO (multiple-input multiple-output). In the first part of this letter, we develop a channel model for holographic massive MIMO by considering both non-isotropic scattering and directive antennas. With a large number of antennas, it is difficult to obtain full knowledge of the spatial correlation matrix. In this case, channel estimation is conventionally done using the least-squares (LS) estimator that requires no prior information of the channel statistics or array geometry. In the second part of this letter, we propose novel channel estimation schemes that exploit the array geometry to identify a subspace of reduced rank that covers the eigenspace of any spatial correlation matrix. The proposed estimators outperform the LS estimator, without using channel statistics, and provide different performance/complexity tradeoffs.
翻译:在现实的无线环境中,多antenna频道通常在空间相关性矩阵方面出现全面知识的消退。当大量天线被密集部署,称为全息大规模百万兆米(多输出多输出多输出)。在本信的第一部分,我们开发一个全息大规模百万兆米的频道模型,既考虑非同位素散射,又考虑指令天线。由于天线数量众多,很难获得对空间相关性矩阵的充分知识。在这种情况下,频道估算通常使用最不平方的天体估计仪,不需要事先提供频道统计数据或阵列几何学的信息。在本信的第二部分,我们提出新的频道估算方案,利用阵列几何方法确定一个缩小等级的子空间,涵盖任何空间相关性矩阵的空气空间空间。拟议的估计器在不使用频道统计数据的情况下超越了LS天体测量仪的尺寸,并提供不同的性能/兼容性取舍。