We consider a space structured population model generated by two point clouds: a homogeneous Poisson process $M=\sum_{j}\delta_{X_{j}}$ with intensity of order $n\to\infty$ as a model for a parent generation together with a Cox point process $N=\sum_{j}\delta_{Y_{j}}$ as offspring generation, with conditional intensity of order $M\ast(\sigma^{-1}f(\cdot/\sigma))$, where $\ast$ denotes convolution, $f$ is the so-called dispersal density, the unknown parameter of interest, and $\sigma>0$ is a physical scale parameter. Based on a realisation of $M$ and $N$, we study the nonparametric estimation of $f$, for several regimes $\sigma=\sigma_{n}$. We establish that the optimal rates of convergence do not depend monotonously on the scale $\sigma$ and construct minimax estimators accordingly. Depending on $\sigma$, the reconstruction problem exhibits a competition between a direct and a deconvolution problem. Our study reveals in particular the existence of a least favourable intermediate inference scale.
翻译:我们把由两点云产生的空间结构人口模型视为后代生成的一种空间结构模式:一个以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位计算单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位计算成成成成成成成成成成成成成成成单位、以美元为单位、以美元为单位、以美元为单位、以美元为单位、计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计者计算计算计算计算之计算之计算之计算之计算之计算之计算之计算之计算之计算之计算之计算之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之模之