Embodied artificial intelligence (AI) represents an artificial intelligence system that interacts with the physical world through sensors and actuators, seamlessly integrating perception and action. This design enables AI to learn from and operate within complex, real-world environments. Large Language Models (LLMs) deeply explore language instructions, playing a crucial role in devising plans for complex tasks. Consequently, they have progressively shown immense potential in empowering embodied AI, with LLM-based embodied AI emerging as a focal point of research within the community. It is foreseeable that, over the next decade, LLM-based embodied AI robots are expected to proliferate widely, becoming commonplace in homes and industries. However, a critical safety issue that has long been hiding in plain sight is: could LLM-based embodied AI perpetrate harmful behaviors? Our research investigates for the first time how to induce threatening actions in embodied AI, confirming the severe risks posed by these soon-to-be-marketed robots, which starkly contravene Asimov's Three Laws of Robotics and threaten human safety. Specifically, we formulate the concept of embodied AI jailbreaking and expose three critical security vulnerabilities: first, jailbreaking robotics through compromised LLM; second, safety misalignment between action and language spaces; and third, deceptive prompts leading to unaware hazardous behaviors. We also analyze potential mitigation measures and advocate for community awareness regarding the safety of embodied AI applications in the physical world.
翻译:暂无翻译