Given an integer linear recurrence sequence $\langle X_n \rangle_n$, the Skolem Problem asks to determine whether there is a natural number $n$ such that $X_n = 0$. Recent work by Lipton, Luca, Nieuwveld, Ouaknine, Purser, and Worrell proved that the Skolem Problem is decidable for a class of reversible sequences of order at most seven. Here we give an alternative proof of their result. Our novel approach employs a powerful result for Galois conjugates that lie on two concentric circles due to Dubickas and Smyth.
翻译:考虑到整数线性重现序列$\langle X_n\rangle_n$$, Skolem问题要求确定是否有自然数字为$n=$n=0美元。 Lipton、Luca、Nieuwveld、Ouaknine、Purser和Worrell最近的工作证明, Skolem问题对于最多7个可逆的秩序序列来说是可变的。这里我们给出了它们结果的替代证据。我们的新颖方法对由于Dubickas和Smyth而存在于两个同心圆圆圈上的Galois conjugates使用了强大的结果。