In this article, we study the repeated routing game problem on a parallel network with affine latency functions on each edge. We cast the game setup in a LQR control theoretic framework, leveraging the Rosenthal potential formulation. We use control techniques to analyze the convergence of the game dynamics with specific cases that lend themselves to optimal control. We design proper dynamics parameters so that the conservation of flow is guaranteed. We provide an algorithmic solution for the general optimal control setup using a multiparametric quadratic programming approach (explicit MPC). Finally we illustrate with numerics the impact of varying system parameters on the solutions.
翻译:在本篇文章中,我们研究了在平行网络上反复出现的路线游戏问题,每个边缘都有等离子延缓功能。我们把游戏设置放在一个 LQR 控制理论框架中,利用罗森塔尔的潜在配方。我们使用控制技术分析游戏动态与适合最佳控制的具体案例的趋同情况。我们设计了适当的动态参数,以便保证流量的保护。我们利用多参数的二次方程编程方法(明确的 MPC)为总体最佳控制设置提供了算法解决方案。最后我们用数字来说明不同系统参数对解决方案的影响。