In this paper, we study second-order algorithms for solving nonconvex-strongly concave minimax problems, which have attracted much attention in recent years in many fields, especially in machine learning. We propose a gradient norm regularized trust region (GRTR) algorithm to solve nonconvex-strongly concave minimax problems, where the objective function of the trust region subproblem in each iteration uses a regularized version of the Hessian matrix, and the regularization coefficient and the radius of the ball constraint are proportional to the square root of the gradient norm. The iteration complexity of the proposed GRTR algorithm to obtain an $\mathcal{O}(\epsilon,\sqrt{\epsilon})$-second-order stationary point is proved to be upper bounded by $\tilde{\mathcal{O}}(\rho^{0.5}\kappa^{1.5}\epsilon^{-3/2})$, where $\rho$ and $\kappa$ are the Lipschitz constant of the Jacobian matrix and the condition number of the objective function respectively, which matches the best known iteration complexity of second-order methods for solving nonconvex-strongly concave minimax problems. We further propose a Levenberg-Marquardt algorithm with a gradient norm regularization coefficient and use the negative curvature direction to correct the iteration direction (LMNegCur), which does not need to solve the trust region subproblem at each iteration. We also prove that the LMNegCur algorithm achieves an $\mathcal{O}(\epsilon,\sqrt{\epsilon})$-second-order stationary point within $\tilde{\mathcal{O}}(\rho^{0.5}\kappa^{1.5}\epsilon^{-3/2})$ number of iterations. Numerical results show the efficiency of both proposed algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年1月18日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员