We study the computation of coupled advection-diffusion-reaction equations by the Schwarz waveform relaxation method. The study starts with linear equations, and it analyzes the convergence of the computation with a Dirichlet condition, a Robin condition, and a combination of them as the transmission conditions. Then, an optimized algorithm for the Dirichlet condition is presented to accelerate the convergence, and numerical examples show a substantial speedup in the convergence. Furthermore, the optimized algorithm is extended to the computation of nonlinear equations, including the viscous Burgers equation, and numerical experiments indicate the algorithm may largely remain effective in the speedup of convergence.
翻译:我们用Schwarz波形放松法来研究对向反扩散反反应方程式的计算方法。该研究首先从线性方程式开始,分析计算与Drichlet条件、Robin条件和它们结合的传输条件的趋同情况。然后,提出Drichlet条件的优化算法以加快趋同速度,数字实例显示趋同速度的大幅加快。此外,优化算法还扩大到非线性方程式的计算,包括粘合布尔格斯方程式,数字实验表明算法在加速趋同方面可能在很大程度上仍然有效。