Nesterov's Accelerated Gradient (NAG) for optimization has better performance than its continuous time limit (noiseless kinetic Langevin) when a finite step-size is employed \citep{shi2021understanding}. This work explores the sampling counterpart of this phenonemon and proposes a diffusion process, whose discretizations can yield accelerated gradient-based MCMC methods. More precisely, we reformulate the optimizer of NAG for strongly convex functions (NAG-SC) as a Hessian-Free High-Resolution ODE, change its high-resolution coefficient to a hyperparameter, inject appropriate noise, and discretize the resulting diffusion process. The acceleration effect of the new hyperparameter is quantified and it is not an artificial one created by time-rescaling. Instead, acceleration beyond underdamped Langevin in $W_2$ distance is quantitatively established for log-strongly-concave-and-smooth targets, at both the continuous dynamics level and the discrete algorithm level. Empirical experiments in both log-strongly-concave and multi-modal cases also numerically demonstrate this acceleration.
翻译:用于优化的 Nesterov 加速梯度( NAG) 的性能优于其连续时间限制( 无噪音的动动能朗埃文) 。 这项工作探索了此苯酮的抽样对应方, 并提出了扩散进程, 其离散可产生加速梯度基 MMC 方法。 更确切地说, 我们重新配置NAG的优化器, 以作为海珊自由高分辨率 ODE (NAG- SC), 将其高分辨率系数改变为超参数, 输入适当的噪音, 并分离所产生的扩散进程 。 新的超paramon 加速效果是量化的, 而不是由时间缩放产生的人工效果 。 相反, 超标为 $W_ 2 的 Langevin 以外, 的加速度是在持续动态水平和离散算算算值水平上, 为log- 强凝固的凝固度- 和 moothoth 目标, 持续动态级别和离散算值水平都建立了定量的加速度。 在log- 强度- glog- glog- calcalcable cocave- coal- alcevile cust cust diculation- alviculticulationculationculationculationculationculation 壳中进行实验实验性实验性实验性实验性实验性实验性实验。