We present a numerical method to efficiently solve optimization problems governed by large-scale nonlinear systems of equations, including discretized partial differential equations, using projection-based reduced-order models accelerated with hyperreduction (empirical quadrature) and embedded in a trust-region framework that guarantees global convergence. The proposed framework constructs a hyperreduced model on-the-fly during the solution of the optimization problem, which completely avoids an offline training phase. This ensures all snapshot information is collected along the optimization trajectory, which avoids wasting samples in remote regions of the parameters space that are never visited, and inherently avoids the curse of dimensionality of sampling in a high-dimensional parameter space. At each iteration of the proposed algorithm, a reduced basis and empirical quadrature weights are constructed precisely to ensure the global convergence criteria of the trust-region method are satisfied, ensuring global convergence to a local minimum of the original (unreduced) problem. Numerical experiments are performed on two fluid shape optimization problems to verify the global convergence of the method and demonstrate its computational efficiency; speedups over 18x (accounting for all computational cost, even cost that is traditionally considered "offline" such as snapshot collection and data compression) relative to standard optimization approaches that do not leverage model reduction are shown.


翻译:我们提出了一个数字方法,以有效解决由大型非线性方程式系统所制约的优化问题,包括分散的局部偏差方程式,使用以超减速加速的投影减序模型,以加速超减速(经验二次曲线)并嵌入一个信任区域框架,保证全球趋同。拟议框架在解决优化问题期间构建了一个超降的现场模型,完全避免了离线培训阶段。这确保了在优化轨道上收集所有快照信息,避免在从未访问的参数空间的偏远地区浪费样本,并避免了高维参数空间取样的多层面性。在拟议的算法的每一次迭代、一个减少的基础和实验性二次等重中,精确地构建了确保信任区域方法的全球趋同标准得到满足,确保全球与原始(不受限制的)问题的最低当地趋同。在两个液态优化问题上进行了微调的实验,以核实方法的全球趋同,并展示其计算效率;在18x(计算所有计算成本的计算模型上加快了18x(所有计算成本的计算,甚至模拟模拟模拟的模拟的模拟是模拟,模拟的模拟的压缩成本,通常认为是模拟的模拟的模拟的模拟的模拟的压压压。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
0+阅读 · 2022年8月9日
Arxiv
0+阅读 · 2022年8月5日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员