In expressive speech synthesis, there are high requirements for emotion interpretation. However, it is time-consuming to acquire emotional audio corpus for arbitrary speakers due to their deduction ability. In response to this problem, this paper proposes a cross-speaker emotion transfer method that can realize the transfer of emotions from source speaker to target speaker. A set of emotion tokens is firstly defined to represent various categories of emotions. They are trained to be highly correlated with corresponding emotions for controllable synthesis by cross-entropy loss and semi-supervised training strategy. Meanwhile, to eliminate the down-gradation to the timbre similarity from cross-speaker emotion transfer, speaker condition layer normalization is implemented to model speaker characteristics. Experimental results show that the proposed method outperforms the multi-reference based baseline in terms of timbre similarity, stability and emotion perceive evaluations.


翻译:在言语表达合成中,对情感解释的要求很高,然而,由于任意演讲者的推论能力,为他们获取情感音质材料是耗费时间的。针对这一问题,本文件提出一种跨声音情感传输方法,可以实现情感从源演讲者向目标演讲者转移。一组情感象征首先被定义为代表各种类型的情感。它们经过培训后与相应的情感高度相关,以便通过交叉元素损失和半监督的培训战略进行可控合成。同时,为了消除跨声音情感转移导致的低位至小字相似性,对示范演讲者特点实行了语态状态分层正常化。实验结果表明,拟议的方法在质谱相似性、稳定性和情感感知评价方面优于多参照基线。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2021年7月4日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Teacher-Student Training for Robust Tacotron-based TTS
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2021年7月4日
一份循环神经网络RNNs简明教程,37页ppt
专知会员服务
173+阅读 · 2020年5月6日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
已删除
将门创投
3+阅读 · 2019年4月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员