We provide a geometric approach to the lasso. We study the tangency of the level sets of the least square objective function with the polyhedral boundary sets $B(t)$ of the parameters in $\mathbb R^p$ with the $\ell_1$ norm equal to $t$. Here $t$ decreases from the value $\hat t$, which corresponds to the actual, nonconstrained minimizer of the least square objective function, denoted by $\hat\beta$. We derive closed exact formulae for the solution of the lasso under the full rank assumption. Our method does not assume iterative numerical procedures and it is, thus, computationally more efficient than the existing algorithms for solving the lasso. We also establish several important general properties of the solutions of the lasso. We prove that each lasso solution form a simple polygonal chain in $\mathbb{R}^p$ with $\hat\beta$ and the origin as the endpoints. There are no two segments of the polygonal chain that are parallel. We prove that such a polygonal chain can intersect interiors of more than one orthant in $\mathbb{R}^p$, but it cannot intersect interiors of more than $p$ orthants, which is, in general, the best possible estimate for non-normalized data. We prove that if a polygonal chain passes from the interior of one to the interior of another orthant, then it never again returns to the interior of the former. The intersection of a chain and the interior of an orthant coincides with a segment minus its end points, which belongs to a ray having $\hat\beta$ as its initial point. We illustrate the results using real data examples as well as especially crafted examples with hypothetical data. Already in $p=2$ case we show a striking difference in the maximal number of quadrants a polygonal chain of a lasso solution can intersect in the case of normalized data, which is $1$ vs. nonnormalized data, which is $2$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2022年3月18日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员