Multi-agent interactions are important to model for forecasting other agents' behaviors and trajectories. At a certain time, to forecast a reasonable future trajectory, each agent needs to pay attention to the interactions with only a small group of most relevant agents instead of unnecessarily paying attention to all the other agents. However, existing attention modeling works ignore that human attention in driving does not change rapidly, and may introduce fluctuating attention across time steps. In this paper, we formulate an attention model for multi-agent interactions based on a total variation temporal smoothness prior and propose a trajectory prediction architecture that leverages the knowledge of these attended interactions. We demonstrate how the total variation attention prior along with the new sequence prediction loss terms leads to smoother attention and more sample-efficient learning of multi-agent trajectory prediction, and show its advantages in terms of prediction accuracy by comparing it with the state-of-the-art approaches on both synthetic and naturalistic driving data. We demonstrate the performance of our algorithm for trajectory prediction on the INTERACTION dataset on our website.
翻译:多剂相互作用对于预测其他物剂的行为和轨迹非常重要。在某个时候,为了预测合理的未来轨迹,每种物剂都需要注意与仅少数最相关物剂的相互作用,而不是不必要地关注所有其他物剂。然而,现有的注意模拟工作忽视了驾驶中的人类注意力不会迅速变化,而且可能会在不同时间步骤中引起波动的注意。在本文件中,我们根据之前的完全变化时间平滑性,为多剂相互作用制定一个注意模式,并提议一个轨迹预测结构,利用这些所参与的相互作用的知识。我们展示了之前的全变的注意以及新的序列预测损失术语如何导致对多剂轨迹预测的更顺畅关注和更具抽样效率的学习,并通过将其与合成和自然动力驱动数据的最新方法进行比较,显示出预测准确性的优势。我们展示了我们在网站InterACtion数据集上进行轨迹预测的算法表现。