项目名称: 基于酞菁修饰的一维纳米结构光响应化学传感器研究

项目编号: No.61204128

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 徐海涛

作者单位: 中国科学院理化技术研究所

项目金额: 28万元

中文摘要: 快速准确高灵敏检测痕量硝基芳烃(如TNT、DNT、AT)对隐藏爆炸物的探测、预防恐怖犯罪和环境质量监控具有重要意义。目前,基于硝基芳烃的荧光检测多集中在可见区,易受干扰。本项目拟制备具有氨基、羧基或者磺酸基取代的Ni、Cu、Zn金属酞菁类分子修饰一维硅纳米结构的新型近红外荧光传感器,利用一维纳米结构比表面积大、灵敏度高以及酞菁类分子近红外发光对背景荧光传感器干扰性小等优点,通过对硅纳米线的形貌、尺寸和结构的优化,设计对硝基芳烃选择性识别的酞菁分子并通过共价键修饰到一维纳米结构的表面,实现对硝基芳烃高灵敏、高选择、强抗背景荧光干扰检测。通过研究揭示硅纳米线的形貌、尺寸、结构、表面态等特征与传感器灵敏度的关系,探索酞菁分子的分子结构对传感器的选择性和抗背景荧光干扰性的影响,认识传感器对检测目标光响应的光物理和光化学过程。本项目的研究结果将为硝基芳烃类隐藏炸药的超灵敏检测提供一种新的方法。

中文关键词: 硅纳米线;传感器;荧光;染料;

英文摘要: It is significant that quick, accurate,and high sensitive detection of the traces nitric arene such as TNT,DNT and AT,to name just a few, can be applied in hidden explosive devices test, in preventing the terrorist crime and in monitoring the environment quality. At present, the fluorescence detection of nitric arene is more focus on susceptible visible light area. In this project, a new type near-infrared sensor is comprised of one-dimension silicon nanometer line, which owns an array of benefits such as huge specific surface area and high sensitivity, and mantal ion phthalocyanine modified by ammonia,carboxyl,or sulfonic group, which is insusceptible for its fluorescent emits in near-infrared light area. This kind of sensor can detective traces of nitro arene selectively, sensitively, and can be influenced by fluorescent light background hardly, through the way that is to combine the silicon nanometer line, whose surface, structure, and dimension is optimized, with the phthalocyanine, wich is proper designed for special molecule structure responding to nitro arene respectively, by chemical covalent bond. In the progress, the relationships will be discovered between sensor's sensitivity and silicon nanometer line's surface, structure, and dimension, and the influence will be explored between sensor's select

英文关键词: Silicon nanowire;Sensor;Fluorescent;Dyements;

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
114+阅读 · 2022年4月8日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
16+阅读 · 2021年9月7日
专知会员服务
24+阅读 · 2021年8月22日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020】 图神经网络在生物医药领域的应用
专知会员服务
37+阅读 · 2020年11月2日
[ICML2020]层次间消息传递的分子图学习
专知会员服务
33+阅读 · 2020年6月27日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月27日
Arxiv
0+阅读 · 2022年4月26日
Arxiv
0+阅读 · 2022年4月26日
Arxiv
15+阅读 · 2019年4月4日
小贴士
相关资讯
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
相关基金
微信扫码咨询专知VIP会员