Semantic place annotation can provide individual semantics, which can be of great help in the field of trajectory data mining. Most existing methods rely on annotated or external data and require retraining following a change of region, thus preventing their large-scale applications. Herein, we propose an unsupervised method denoted as UPAPP for the semantic place annotation of trajectories using spatiotemporal information. The Bayesian Criterion is specifically employed to decompose the spatiotemporal probability of the candidate place into spatial probability, duration probability, and visiting time probability. Spatial information in ROI and POI data is subsequently adopted to calculate the spatial probability. In terms of the temporal probabilities, the Term Frequency Inverse Document Frequency weighting algorithm is used to count the potential visits to different place types in the trajectories, and generates the prior probabilities of the visiting time and duration. The spatiotemporal probability of the candidate place is then combined with the importance of the place category to annotate the visited places. Validation with a trajectory dataset collected by 709 volunteers in Beijing showed that our method achieved an overall and average accuracy of 0.712 and 0.720, respectively, indicating that the visited places can be annotated accurately without any external data.
翻译:在轨迹数据挖掘领域,语义化地点说明可以提供单个语义学,这在轨迹数据挖掘领域大有帮助。大多数现有方法依靠附加说明或外部数据,在区域变化后需要再培训,从而防止其大规模应用。在这里,我们建议采用一种不受监督的方法,用地貌信息来表示对轨迹的语义学地点说明的UPAPP(UPAP),用地貌信息来表示对轨迹的语义性说明;巴耶斯标准具体用于将候选地点的随机概率分解为空间概率、持续时间概率和访问时间概率。随后采用了ROI和POI数据中的空间信息来计算空间概率。在时间概率方面,使用时间频率反文档频率加权算法来计算对轨迹不同类型的潜在访问,并生成访问时间和持续时间的先前概率。然后,选择地点的时空概率与地点类别对被访问地点的重要性相结合。在时间概率方面,可以采用ROI和POI数据中的空间信息,随后用于计算空间概率。在时间概率方面,在时间概率方面,使用Trence Transuration Intration Train Train Intation of train trainationslation of a selation 709 extal slationslationslationslation 7-