The coordinated alternating current optimal power flow (ACOPF) for coupled transmission-distribution grids has become crucial to handle problems related to high penetration of renewable energy sources (RESs). However, obtaining all system details and solving ACOPF centrally is not feasible because of privacy concerns. Intermittent RESs and uncontrollable loads can swiftly change the operating condition of the power grid. Existing decentralized optimization methods can seldom track the optimal solutions of time-varying ACOPFs. Here, we propose an online decentralized optimization method to track the time-varying ACOPF of coupled transmission-distribution grids. First, the time-varying ACOPF problem is converted to a dynamic system based on Karush-Kuhn-Tucker conditions from the control perspective. Second, a prediction term denoted by the partial derivative with respect to time is developed to improve the tracking accuracy of the dynamic system. Third, a decentralized implementation for solving the dynamic system is designed based on only a few information exchanges with respect to boundary variables. Moreover, the proposed algorithm can be used to directly address nonlinear power flow equations without relying on convex relaxations or linearization techniques. Numerical test results reveal the effectiveness and fast-tracking performance of the proposed algorithm.
翻译:协调的当前相互交替的最佳输电流(ACOPF)对于同时传输分配网的交替最佳电流(ACOPF)对于处理与可再生能源高渗透有关的问题至关重要。然而,获得所有系统细节和中央解决ACOPF并不可行,因为隐私问题。间歇式电流和无法控制的负载可以迅速改变电网的运行状况。现有的分散化优化方法很少能够跟踪时间变化的ACOPF的最佳解决方案。在这里,我们提议了一种在线分散化优化方法,以跟踪同时传输分配网的时间变化的ACOPF。首先,时间变化式ACOPF问题从控制角度转换成一个基于Karush-Kuhn-Tucker条件的动态系统。第二,用部分衍生物和时间的预测术语来显示电网的运行状况,以提高动态系统跟踪的准确性。第三,解决动态系统的分散化实施方法只能建立在关于边界变量的少数信息交流的基础上。此外,拟议的算法可以直接处理非线性电流方电流方程式,而不必依赖拟议中的convex relax relax-tranal practal press practal press press press pressal practal press press practal press pressal press 。