项目名称: 单分子乃至亚分子尺度的量子态研究

项目编号: No.91321309

项目类型: 重大研究计划

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王兵

作者单位: 中国科学技术大学

项目金额: 420万元

中文摘要: 在重大研究计划"单量子态的探测及相互作用"的支持下, 我们在单分子尺度量子态检测方面取得了系统性的研究成果, 在检测技术发展方面取得了重要进展. 本集成项目拟紧密结合扫描隧道显微术(STM), 发展与多种谱学和超快技术联用的高分辨检测技术, 包括进一步发展和完善STM探针增强拉曼检测技术(TERS), 拓展其对光化学微观反应中的检测能力; 完善和优化扫STM和电子自旋共振年波谱技术(STM-ESR), 实现分子尺度单自旋态检测; 发展STM和超快光电子技术联用(STM-UltrafastPE), 实现分子尺度量子态动力学演化过程探测并认识其规律. 深入开展表面单分子乃至亚分子尺度分辨的电子态、自旋态、振动态和光子态等量子态的检测和控制,深入理解和阐明单分子尺度的自旋态相互作用机理、基于表面等离激元的单分子光电效应、单分子化学键成键与断键微观物理机理、量子态与环境相互作用及其动力学演化规律.

中文关键词: 单分子;亚分子;量子态;动力学演化;探测技术

英文摘要: Supported by the NSFC major research plan "Detection and Interaction of Single Quantum state", we achieved systematic progress on the detection of quantum states at a single molecule level, as well as on the development of detecting techniques. In this integration proposal, we plan to develop multi-techniques by combination of different spectroscopic techniques with scanning tunnuling microscopy/spctreoscopy for high resolution characterization and controlling of electronic states, spin states, vibiational states, and photonic states. These techniques include the sub-molecule resolved tip-enhanced raman spectoscopy (TERS), scanning tunneling microcopy-electron resonant spectroscopy (STM-ESR), STM-Ultrafast photoelectron spectroscopy. With these multi-functional techniques, we will study the quantum states at the single-molecule level even to the sub-molecule level to understand the mechanism of the molecular spin interactions, molecular photoelectric effect excited by the surface plasmon, the microscopic processes of molecular bond forming and breaking, and the dynamics of the quantum states due to their interactions with the environments.

英文关键词: single molecule;submolecule;quantum states;dynamic evolution;probing technique

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
16+阅读 · 2021年5月23日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】CausalVAE: 引入因果结构的解耦表示学习
专知会员服务
36+阅读 · 2021年3月28日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
90+阅读 · 2020年10月30日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
量子退火 DNA 序列组装算法
大数据文摘
0+阅读 · 2022年4月21日
2021年物理学十大进展权威发布,中国团队入选
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
CVPR 2018 |“寻找”极小人脸
极市平台
14+阅读 · 2018年7月11日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月25日
Arxiv
0+阅读 · 2022年4月23日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
小贴士
相关VIP内容
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
31+阅读 · 2022年3月18日
面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
16+阅读 · 2021年5月23日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR2021】CausalVAE: 引入因果结构的解耦表示学习
专知会员服务
36+阅读 · 2021年3月28日
专知会员服务
17+阅读 · 2020年12月23日
专知会员服务
90+阅读 · 2020年10月30日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关资讯
量子退火 DNA 序列组装算法
大数据文摘
0+阅读 · 2022年4月21日
2021年物理学十大进展权威发布,中国团队入选
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
CVPR 2018 |“寻找”极小人脸
极市平台
14+阅读 · 2018年7月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员