The aim of this work is to utilize an adaptive decentralized control method called virtual decomposition control (VDC) to control the orientation and position of the end-effector of a 7 degrees of freedom (DoF) right-hand upper-limb exoskeleton. The prevailing adaptive VDC approach requires tuning of 13n adaptation gains along with 26n upper and lower parameter bounds, where n is the number of rigid bodies. Therefore, utilizing the VDC scheme to control high DoF robots like the 7-DoF upper-limb exoskeleton can be an arduous task. In this paper, a new adaptation function, so-called natural adaptation law (NAL), is employed to eliminate these burdens from VDC, which results in reducing all 13n gains to one and removing dependency on upper and lower bounds. In doing so, VDC-based dynamic equations are restructured, and inertial parameter vectors are made compatible with NAL. Then, the NAL adaptation function is exploited to design a new adaptive VDC scheme. This novel adaptive VDC approach ensures physical consistency conditions for estimated parameters with no need for upper and lower bounds. Finally, the asymptotic stability of the algorithm is proved with the virtual stability concept and the accompanying function. The experimental results are utilized to demonstrate the excellent performance of the proposed new adaptive VDC scheme.


翻译:这项工作的目的是使用一种适应性分散控制方法,称为虚拟分解控制(VDC),以控制7度自由(DoF)右手右上升升平exoskeleton7度自由(DoF)的终效器的方向和位置。现行适应性VDC方法要求调整13n的适应收益和26n的上下参数界限,其中n为硬体体数。因此,利用VDC计划控制高度DoF机器人,如7度多佛上升平流外向骨骼(VDC),可能是一项艰巨的任务。在本文中,采用了一种新的适应功能,即所谓的自然适应法(NAL),以消除VDC的这些负担,从而将所有13度收益减少到1度,并消除对上下界限的依赖。为此,VDC的动态方程式进行了调整,惯性参数矢量与NAL兼容。然后,NAL适应功能被用来设计一个新的适应性VDC计划。这种新型适应性VDC方法确保了估计参数的物理一致性条件,而无需对上下限和下限的虚拟适应性法律概念。最后证明,VDC的拟议的适应性功能是已加以利用的。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月2日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员