Deep generative models (DGMs) are data-eager. Essentially, it is because learning a complex model on limited data suffers from a large variance and easily overfits. Inspired by the \emph{bias-variance dilemma}, we propose \emph{regularized deep generative model} (Reg-DGM), which leverages a nontransferable pre-trained model to reduce the variance of generative modeling with limited data. Formally, Reg-DGM optimizes a weighted sum of a certain divergence between the data distribution and the DGM and the expectation of an energy function defined by the pre-trained model w.r.t. the DGM. Theoretically, we characterize the existence and uniqueness of the global minimum of Reg-DGM in the nonparametric setting and rigorously prove the statistical benefits of Reg-DGM w.r.t. the mean squared error and the expected risk in a simple yet representative Gaussian-fitting example. Empirically, it is quite flexible to specify the DGM and the pre-trained model in Reg-DGM. In particular, with a ResNet-18 classifier pre-trained on ImageNet and a data-dependent energy function, Reg-DGM consistently improves the generation performance of strong DGMs including StyleGAN2 and ADA on several benchmarks with limited data and achieves competitive results to the state-of-the-art methods.
翻译:从根本上说,这是因为学习关于有限数据的复杂模型存在巨大的差异,而且容易过度使用。根据emph{bias- variance falderfilent},我们提议使用不转让的、不正规的深基因模型}(Reg-DGM),利用不可转让的、预先培训的模式来减少与有限数据相比的基因模型的差异。形式上,Reg-DGM优化了数据分配和DGM之间某种差异的加权总和,以及预先培训的模型w.r.Nett.DGM.的能源功能。理论上,我们把Reg-DGM这一全球最低标准在非参数环境中的存在和独特性化,并严格地证明Reg-DGMw.r.t.的统计效益,即平均正方形错误和预期风险在简单但具有代表性的Gausiasian适应性实例中有所区别。在指定DGMMD和事先培训的Reg-GM基准模型方面相当灵活,包括持续地改进了REGS-S-AD2的可靠和制式数据生成前的系统。