Customer Life Time Value (LTV) is the expected total revenue that a single user can bring to a business. It is widely used in a variety of business scenarios to make operational decisions when acquiring new customers. Modeling LTV is a challenging problem, due to its complex and mutable data distribution. Existing approaches either directly learn from posterior feature distributions or leverage statistical models that make strong assumption on prior distributions, both of which fail to capture those mutable distributions. In this paper, we propose a complete set of industrial-level LTV modeling solutions. Specifically, we introduce an Order Dependency Monotonic Network (ODMN) that models the ordered dependencies between LTVs of different time spans, which greatly improves model performance. We further introduce a Multi Distribution Multi Experts (MDME) module based on the Divide-and-Conquer idea, which transforms the severely imbalanced distribution modeling problem into a series of relatively balanced sub-distribution modeling problems hence greatly reduces the modeling complexity. In addition, a novel evaluation metric Mutual Gini is introduced to better measure the distribution difference between the estimated value and the ground-truth label based on the Lorenz Curve. The ODMN framework has been successfully deployed in many business scenarios of Kuaishou, and achieved great performance. Extensive experiments on real-world industrial data demonstrate the superiority of the proposed methods compared to state-of-the-art baselines including ZILN and Two-Stage XGBoost models.
翻译:客户生命时间值(LTV)是一个单一用户可以带来企业的预期总收入。 它被广泛用于各种商业情景,以便在获得新客户时做出操作决定。 模拟LTV是一个具有挑战性的问题, 原因是其数据分布复杂和可变。 现有方法要么直接从后传地貌分布中学习, 要么利用对先前分布作出有力假设的统计模型,这两种模型都未能捕捉这些变异分布。 在本文件中,我们提出了一套完整的工业级LTV建模解决方案。 具体地说, 我们引入了一套秩序依赖性单调网络(ODMN), 以模拟不同时间跨度的LTV之间的定单依赖性模式, 从而极大地改进模型的性能。 我们还引入了一个基于差异和差异理念的多分配多分配专家模块, 将严重不平衡的分布模型问题转化为一系列相对平衡的次分配模型问题,从而大大降低了模型的复杂性。 此外,我们引入了一个新的评价标准 Gini, 以更好地衡量不同时间跨度的LTVTV的估算值和地面安全度之间的分配差异, 这在LO-MIL的模型上成功展示了包括MDO的模型的模型的模型。