These lecture notes aim at a post-Bachelor audience with a background at an introductory level in Applied Mathematics and Applied Statistics. They discuss the logic and methodology of the Bayes-Laplace approach to inductive statistical inference that places common sense and the guiding lines of the scientific method at the heart of systematic analyses of quantitative-empirical data. Following an exposition of exactly solvable cases of single- and two-parameter estimation problems, the main focus is laid on Markov Chain Monte Carlo (MCMC) simulations on the basis of Hamiltonian Monte Carlo sampling of posterior joint probability distributions for regression parameters occurring in generalised linear models for a univariate outcome variable. The modelling of fixed effects as well as of correlated varying effects via multi-level models in non-centred parametrisation is considered. The simulation of posterior predictive distributions is outlined. The assessment of a model's relative out-of-sample posterior predictive accuracy with information entropy-based criteria WAIC and LOOIC and model comparison with Bayes factors are addressed. A brief discussion on the description of the generation of stationary time series data by means of autoregressive models is contained. Concluding, a conceptual link to the behavioural subjective expected utility representation of a single decision-maker's choice behaviour in static one-shot decision problems is established. Vectorised codes for MCMC simulations of multi-dimensional posterior joint probability distributions with the Stan probabilistic programming language implemented in the statistical software R are provided. The lecture notes are fully hyperlinked. They direct the reader to original scientific research papers, online resources on inductive statistical inference, and to pertinent biographical information.
翻译:这些讲座说明针对的是具有应用数学和应用统计学入门级背景的学士级读者;它们讨论了巴耶拉比方法的逻辑和方法,该方法将常识和科学方法的指导线置于系统分析定量-经验数据的核心,科学方法的指导线置于系统分析定量-经验数据的核心;在对单一和两参数估算问题完全可解脱的案例进行解析后,主要重点是在汉密尔顿·蒙特卡洛对应用数学和应用统计统计统计的普通线性模型中出现的后退参数联合概率分布进行模拟;研究固定效应的建模以及通过多层次模型分析科学方法指导科学方法的指导线;对单项和两参数估算问题进行模拟;对基于信息的软件Sentopy Coloral Complication Colorlo (MC) 进行模拟,并据此对后退率参数进行后退比值分析; 将固定效应的模型的模型模型模型模拟结果与标准WAIC和LOIC和模型与Bayes的在线参数进行模拟对比; 将固定效果的预估结果与标准在生成的模型中,将自动分析结果分析; 将自动分析结果分析结果的模型在生成的模型中,将自动分析结果分析结果分析结果分析结果分析结果分析,将分析结果分析结果分析结果分析结果分析结果分析,将分析结果分析结果分析结果分析结果分析,将分析结果分析结果分析结果分析结果分析结果分析结果分析结果分析结果分析,将分析,将分析,将分析为结果分析为结果分析,将分析结果分析结果分析结果分析结果分析结果分析结果分析结果分析为结果分析为结果分析结果分析结果分析结果分析为结果分析结果分析。