In using multiple regression methods for prediction, one often considers the linear combination of explanatory variables as an index. Seeking a single such index when here are multiple responses is rather more complicated. One classical approach is to use the coefficients from the leading canonical correlation. However, methods based on variances are unable to disaggregate responses by quantile effects, lack robustness, and rely on normal assumptions for inference. We develop here an alternative regression quantile approach and apply it to an empirical study of the performance of large publicly held companies and CEO compensation. The initial results are very promising.


翻译:在使用多重回归方法进行预测时,人们往往将解释性变量的线性组合作为一个指数。当这里是多重反应时,寻求单一的这种指数比较复杂。一种典型的方法是使用主要锥体相关性的系数。然而,基于差异的方法无法根据量化效应、缺乏稳健性以及通常的推理假设进行分解。我们在此开发一种替代的回归量化方法,并将其用于对大型公开控股公司和首席执行官报酬的实证研究。初步结果很有希望。

0
下载
关闭预览

相关内容

【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月5日
Arxiv
0+阅读 · 2021年1月4日
VIP会员
相关VIP内容
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
6+阅读 · 2017年11月27日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员