主题: Mastering Machine Learning with Python in Six Steps

简介: 分六个步骤探索高级Python 3主题的基本原理,所有这些步骤都是为了让您成为一个有价值的实践者而设计的。这个更新版本的方法是基于“六度分离”理论,它指出每个人和所有事物都是最大的六步,并将每一个主题呈现为两个部分:理论概念和使用适当的Python 3包的实际实现。您将从Python3编程语言的基础知识、机器学习历史、演化和系统开发框架开始。本文还介绍了探索性分析、特征降维、回归、时间序列预测等关键数据挖掘/分析概念及其在Scikit学习中的有效实现。您还将学习常用的模型诊断和调优技术。其中包括类创建的最佳概率截止点、方差、偏差、bagging、boosting、集成投票、网格搜索、随机搜索、贝叶斯优化以及物联网数据的降噪技术。最后,您将回顾高级文本挖掘技术、推荐系统、神经网络、深度学习、强化学习技术及其实现。本书中提供的所有代码都将以iPython笔记本的形式提供,使您能够尝试这些示例并将它们扩展到您的优势。

作者简介: Swamynathan Manohar 是一名数据科学从业者和一名狂热的程序员,在数据仓库、商业智能(BI)、分析工具开发、即席分析、预测建模、数据科学产品开发、咨询等各种数据科学相关领域拥有超过14年的经验,制定策略并执行分析计划。

成为VIP会员查看完整内容
87

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
342+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
130+阅读 · 2020年3月15日
【新书】Pro 机器学习算法Python实现,379页pdf
专知会员服务
202+阅读 · 2020年2月11日
Python机器学习课程(代码与教程)
专知
36+阅读 · 2019年5月13日
<好书推荐> -《Pro Deep Learning with TensorFlow》分享
深度学习与NLP
12+阅读 · 2018年9月13日
Arxiv
24+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
13+阅读 · 2018年1月20日
VIP会员
相关论文
Arxiv
24+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
13+阅读 · 2018年1月20日
微信扫码咨询专知VIP会员