We revisit the $k$-Hessian eigenvalue problem on a smooth, bounded, $(k-1)$-convex domain in $\mathbb R^n$. First, we obtain a spectral characterization of the $k$-Hessian eigenvalue as the infimum of the first eigenvalues of linear second-order elliptic operators whose coefficients belong to the dual of the corresponding G\r{a}rding cone. Second, we introduce a non-degenerate inverse iterative scheme to solve the eigenvalue problem for the $k$-Hessian operator. We show that the scheme converges, with a rate, to the $k$-Hessian eigenvalue for all $k$. When $2\leq k\leq n$, we also prove a local $L^1$ convergence of the Hessian of solutions of the scheme. Hyperbolic polynomials play an important role in our analysis.


翻译:我们在一个平滑的、捆绑的、$(k-1)$-convex域域上,用$mathbb Rún美元,重新审视了美元-赫斯-赫斯-赫斯-海格值问题。首先,我们获得了一个光谱特征,将美元-赫斯-赫斯-赫斯-海格值作为线性第二级椭圆操作者第一个伊格值的最小值,其系数属于相应的G\r{a}rding conpee的双重值。第二,我们引入了一种非半衰化的反迭接机制,以解决赫斯-赫斯操作者的乙基值问题。我们显示,以一个速率将该计划与所有美元-赫斯-赫斯-赫斯-伊格值相趋同。当2美元\leq kleqn美元时,我们也证明Hesian的解决方案的当地合产值为1美元。超双曲曲多球在我们的分析中发挥了重要作用。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Coordinate Descent Methods for DC Minimization
Arxiv
0+阅读 · 2021年9月9日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员